Catalytic gasification of glycerol in supercritical water
نویسندگان
چکیده
The conversion of glycerol in supercritical water (SCW) was studied at 510 – 550°C and a pressure of 350 bars using both a bed of inert and non-porous ZrO2 particles (hydrothermal experiments), and a bed of 1 % Ru/ZrO2 catalyst particles. Experiments were conducted with a glycerol concentration of 5 wt% in a continuous isothermal fixed-bed reactor at a residence time between 2 and 10 s. Hydrothermolysis of glycerol formed water-soluble products such as acetaldehyde, acetic acid, hydroxyacetone and acrolein, and also gases like H2, CO and CO2. The catalyst enhanced the formation of acetic acid, inhibited the formation of acrolein, and promoted the gasification of the glycerol decomposition products. Hydrogen and carbon oxides were the main gases produced in the catalytic experiments, with only minor amounts of methane and ethylene. Complete glycerol conversion was achieved at a residence time of 8.5 s at 510 °C, and at around 5 s at 550 °C with a 1 wt% Ru/ZrO2 catalyst. The catalyst was not active enough to achieve complete gasification, since high yields of primary products like acetic acid and acetaldehyde were still present. Carbon balances were between 80 and 60 % in the catalytic experiments, decreasing continuously as the residence time was increased. This was attributed partially to the formation of methanol and acetaldehyde, which were not recovered and analyzed efficiently in our set-up, but also to the formation of carbon deposits. Carbon deposition was not observed on the catalyst particles but on the surface of the inert zirconia particles, especially at high residence time. This was related to the higher concentration of acetic acid and other acidic species in the catalytic experiments, which may polymerize to form tar-like carbon precursors. Because of carbon deposition, hydrogen yields were significantly lower than expected; for instance at 550 oC the hydrogen yield potential was only 50 % of the stoichiometric value.
منابع مشابه
Hydrogen rich gas production via nano-catalytic gasification of bagasse in supercritical water
Ru/Al2O3 nano-catalysts were prepared with impregnation and microemulsion techniques. The supercritical water gasification reaction was performed at 400oC and 5-60 min. Within the tested operation conditions, the reaction residence time of 15 min was the optimum to maximize the H2 yield. It was observed that using microemulsion technique increases the total gas yield significantly. Using microe...
متن کاملProduction of Hydrogen and Synthesis gas via Cu-Ni/Al2O3 catalyzed gasification of bagasse in supercritical water media
Bagasse as a real biomass was converted to hydrogen rich gas via catalytic supercritical water gasification process. To find the effect of Cu on selectivity of products, Cu promoted Ni-γAl2O3 catalysts were prepared with 1 to 20wt% Ni and 0.5 to 10wt% Cu loadings via impregnation method. Catalysts were characterized by ICP, BET, XRD, H2 chemisorption and TEM technique as well CHNS analysis was ...
متن کاملEnhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol
A sustainable and effective method for de-oxygenation of few-layer graphene oxide (FLGO) by glycerol gasification in supercritical water (SCW) is described. In this manner, reduction of FLGO and valorization of glycerol, in turn catalyzed by FLGO, are achieved simultaneously. The addition of glycerol enhanced FLGO oxygen removal by up to 59% due to the in situ hydrogen generation as compared to...
متن کاملHydrogen Rich Fuel Gas Production from 2- Propanol Using Pt/Al2O3 and Ni/Al2O3 Catalysts in Supercritical Water
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8C and 22.1MPa), water has lower density and viscosity, and a ...
متن کاملHydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8C and 22.1MPa), water has lower density and viscosity, and a ...
متن کامل